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Overview

So, what are word embeddings, anyway?

• Distributed: dense, low-dimensional representations of words

• Generally, though not always, derived from distributional
information (i.e., word co-occurrences)
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Overview

And why are they useful?

• More computationally efficient than one-hot vectors

• Word embeddings capture semantic information!
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Linear analogies
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This all sounds great; what don’t we know?

Actually, a lot:

• What does the distribution of word embeddings in space look like?

• Why do such low-dimensional embeddings work so well?

• Why does the vector-addition analogy trick work?

• What do word embeddings even learn? Why do distributional word
embeddings work at all? What are co-occurrences really telling us?

Recent work has attempted to address some of these, but many questions
still remain.
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Problems

• Theoretical work is often based on questionable assumptions

• Effects of parameter, algorithm and data choices are not well-known

• Difficult to design new algorithms without fully understanding old
ones!
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Outline

1 How do we embed words?

2 Linear analogies in embedding space

3 What can we observe about our embeddings?

4 Why are our embeddings like this?

5 Conclusions
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A(n incomplete) timeline
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In this talk:

• Core embedding methods

• Matrix-based methods
• word2vec
• GloVe
• Contextualized embeddings: ELMo and BERT

• Expansions?

• Atypical contexts (dependency-based embeddings)
• Association-based embeddings
• Distribution-based embeddings
• Hyperbolic embeddings
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Non-contextualized word embeddings

• Basic problem: given a corpus in which words co-occur with
“contexts”, find low-dimensional representations for words that
encode information about the contexts they occur with.

• How?
• Matrix methods: perform a decomposition of some version of the

co-occurrence matrix
• word2vec: maximize the probability of observed word-context

co-occurrences in a sliding window over the corpus
• GloVe: model the ratios of co-occurrence probabilities
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Counting co-occurrences
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Matrix-based methods

• Given: a co-occurrence matrix M; Mij measures co-occurrence
between word i and context j

• Goal: find word vectors wi , context vectors cj satisfying 〈wi , cj〉 = Mij

• How? Typically, use SVD: M = UΣV T ; take W = UΣ, C = V (for
dimensionality reduction, truncate to top k singular values)

• LSA - contexts are documents

• PPMI-SVD (Bullinaria and Levy (2007)) - contexts are words

• More recently, Stratos et al. (2016) proposed using CCA rather than
matrix factorization
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word2vec

Extended from the original paper from earlier that year, Mikolov et al.
(2013) presented skip-gram with negative sampling (SGNS) as an
alternative to hierarchical softmax

• Given: a corpus of co-occurrences D = a sequence of pairs (wi , cj)

• Goal: find wi , cj maximizing the log-likelihood of the corpus under
the assumption p(wi , cj) = σ(〈wi , cj〉)

• But? Trivial solution - set all word and context vectors equal. To
address this, draw ‘noise’ context words from the unigram
distribution* to use as negative samples

*Terms and conditions may apply.
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GloVe

GloVe (2015) proposed using global co-occurrence information in a similar
way, to preserve relative advantages of both matrix-based and predictive
methods

• Idea: for words i , j and context word k, the ratio pik/pjk tells us
whether word k is more related to i or to j , or equally (un)related to
both

• Use a global objective J =

|V |∑
i ,j=1

f (Mij)(wT
i cj + bi + b′j − logMij)

2
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word2vec and matrix factorization

Levy and Goldberg (2014) demonstrated that objectives for word2vec
SGNS and matrix factorization are very similar:

• SGNS uses the global objective

J =
∑

(w ,c)∈D

#(w , c)(log σ(〈w , c〉) + kEcN∼PD
[log σ(〈−w , cN〉)])

• If all word-context pairs are independent, this reconstructs

[Mij ] : Mij = 〈wi , cj〉 = log

(
#(wi , cj)|D|
#(wi )#(cj)

)
− log k
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word2vec and GloVe

GloVe (2015) provided an additional link between word2vec and the GloVe
objective:

• The (plain) skipgram objective minimizes weighted cross-entropy
between modelled and empirical co-occurrence probabilities:

J = −
∑
i

(∑
k

Mik

)
Pij log

(
exp(〈wi , cj〉)∑

k

exp(〈wi , ck〉)

)

• GloVe does the same but with squared error:

J =
∑
i ,j

(∑
k

Mik

)
(Xij − exp(〈wi , cj〉))2
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Non-contextualized embeddings - conclusion

Different approaches, but fairly similar, and all based on the same premise
- we can represent a word well by encoding its co-occurrence information
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Contextualized word embeddings

• Idea: not every word has a single meaning applicable to every
context!

• Contextualized word embeddings output a vector for each word
conditioned on the context surrounding it

• ELMo (2018): multilayer representations from a BiLSTM
• BERT (2018): transformer-based representations
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ELMo vs BERT
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Does this mean word2vec is obsolete now?

Well... maybe not. ELMo and BERT aren’t as well-understood; for
analysis purposes, using the old methods may be easier.

Furthermore, non-contextualized methods seem like a better jumping-off
point for exploring other assumptions:

• Does linear-context co-occurrence really tell us everything we want?

• Is a single point in Euclidean space really the best way to represent a
word?
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Moving towards more interpretable data

• Levy and Goldberg (2014) use dependency-parse context windows
instead of linear context

• Dependency-based embeddings capture functional rather than topical
similarities

• De Deyne et al. (2016) propose embeddings trained directly from
word association data rather than co-occurrence counts

• Idea: corpus co-occurrences are a noisy signal of word associations
anyway

• Unsurprisingly, representations derived from associations perform better
on similarity tasks
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Distribution-based embeddings

Vilnis and McCallum (2015) propose distribution-based embeddings to
capture uncertainty inherent in words, as well as to express asymmetric
relations.

• Instead of maximizing “probability” of positive co-occurrence pairs,
maximize a different kind of energy function

• Symmetric: “inner product” between Gaussians
(
∫
x∈Rn N (x ;µi ,Σi )N (x ;µj ,Σj) = N (0;µi − µj ,Σi + Σj))

• Asymmetric: KL divergence (allows expression of entailment)
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Distribution-based embeddings
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Hyperbolic space for hierarchical meaning

Euclidean space cannot embed hierarchies! Nickel and Kiela (2017)
propose using hyperbolic space instead, which is capable of embedding
arbitrary trees

• Evaluated on WordNet hyper/hyponym relation inference, performs
drastically better than Euclidean embeddings
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In conclusion?

• There are some cool alternatives to plain old word embeddings!

• ...but people don’t really use them.
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So, about those analogies...
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Paraphrase-based composition

Gittens et al. (2017)

• Idea: a word c is a paraphrase for a set of words C if the probability
distribution of co-occurrence with other words is identical

• If words obey a uniform distribution, linear composition holds

Allen and Hospedales (2019)

• Extend the previous notion to multiple sets of words

• Define word transformations characterized by adding words to a set
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Other explanations

Arora et al. (2016)

• Under the assumptions of their model for language, linear analogies
hold

Ethayarajh et al. (2018)

• Rather than making modeling assumptions, just look at PMI-based
quantities directly

• Constant co-occurrence shifted PMI (PMI(x , y) + logp(x , y)) acts as
a linear relation
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...so why doesn’t it work?

Turns out only some kinds of linear analogies can consistently be solved
with “non-cheating” versions of the parallelogram trick :(

• Rogers et al. (2017) demonstrate that the effectiveness of the
parallelogram trick depends on how similar the target is to the other
words

• Finley et al. (2017) propose a comparative baseline: take the nearest
neighbor of each the two adjacent vertices (‘b’ and ‘c’) and pick the
one closer to the true target

Fei-Tzin Lee (Columbia University) embeddings! Spring 2019 34 / 56



Overview Word embedding methods Analogies Empirical analysis Theory Conclusion

In conclusion...

It’s important not to jump the gun.

Before investigating an exciting phenomenon, make sure it actually works!

Fei-Tzin Lee (Columbia University) embeddings! Spring 2019 35 / 56



Overview Word embedding methods Analogies Empirical analysis Theory Conclusion

Overview

Fei-Tzin Lee (Columbia University) embeddings! Spring 2019 36 / 56



Overview Word embedding methods Analogies Empirical analysis Theory Conclusion

How does the training process affect the final result?
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Hyperparameter effects on performance

Levy, Goldberg and Dagan (2015)

• Rebuttal to Don’t count, predict!

• Changing the exponent of the singular value matrix closes the gap

• Negative samples help for SGNS but not other methods

Österlund et al. (2015)

• Raising Σ to an exponent normalizes principal components

• Removing the largest principal components helps!

Melamud et al. (2016)

• Increasing dimensionality helps only up to a point

• ...but after that point, concatenating embeddings of different context
types and windows helps further!
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Hyperparameter effects on the entire space

Wendlandt et al. (2018)

• Word order and POS matter most

• Frequency doesn’t matter very much!

• GloVe is the most stable overall
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What do we actually get in our word embedding spaces?
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Syntax and semantics

Andreas and Klein (2014)

• Embeddings contain redundant information with constituency parsers

Mitchell and Steedman (2015)

• Compare syntactic and semantic relations

• Conclusion: syntactic and semantic information are approximately
orthogonal!

Hewitt and Manning (2019)

• Idea: can we experimentally identify syntactic information?

• Find a linear transformation such that embeddings in the resulting
subspace represent positions in a parse tree*

*Remarkably, this is not a plothole.
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The geometry of SGNS

Main point: SGNS word vectors end up in a narrow cone, diametrically
opposite the narrow cone of context vectors!

• Effect becomes more pronounced with more negative samples

• Why?
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Conclusion?

• Algorithm choice is less significant than parameter tuning

• There is more to understand beyond downstream performance and
linear analogies!
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Beyond linear composition

• Gittens et al. (2017) do mention an alternate method of composition,
but do not test it (actually, no empirical validation at all!)

• Frandsen and Ge (2019) propose using tensor-based composition of
word embeddings, rather than linear

• Tensor decomposition on three-way correlations gives a core tensor that
yields corrections to additive composition
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What’s in our embeddings? (theory edition)

• Yin and Shen (2018) explain optimal dimension with the minimization
of a unitary-invariant distance function between spaces

• Alvarez-Melis and Jaakkola (2018) approach the difference between
spaces in a slightly different fashion

• Arora et al. (2018) suggest that observed embeddings for polysemous
words are linear compositions of true embeddings for each of the
word’s senses
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Dimension and distance

Yin and Shen (2018)

• Goal: predict the optimal dimension by minimizing distance to an
‘oracle’ embedding

• Metric: pairwise inner-product loss

• Perform bias-variance decomposition with noise assumptions to find
minimal-distance embedding
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Dimension and distance

Yin and Shen (2018)
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‘oracle’ embedding
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Alvarez-Melis and Jaakkola (2018)

• Optimal-transport based distances between spaces

• To avoid rotation and scale issues, use distance between distances
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Polysemy in non-contextualized word embeddings

Arora et al. (2018)

• Under the same random walk model as Arora et al. (2016), they
demonstrate that polysemous words will receive embeddings that are
a linear combination of true sense embeddings

• True embeddings can be recovered with sparse coding!
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What are these embedding methods doing?

Arora et al. (2016)

• Under a particular model of language, word embedding methods will
recover true hidden vectors for words

• A hidden topic vector performs a random walk over the unit sphere;
at each step an observed word is drawn

Hashimoto et al. (2016)

• Idea: word embeddings are actually doing manifold embedding over
an underlying semantic metric space
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Conclusions?

• It seems like it’s somewhat difficult to match real behavior of
language!

• Perhaps better not to make assumptions than to make unrealistic ones

Fei-Tzin Lee (Columbia University) embeddings! Spring 2019 52 / 56



Overview Word embedding methods Analogies Empirical analysis Theory Conclusion

Overview

Fei-Tzin Lee (Columbia University) embeddings! Spring 2019 53 / 56



Overview Word embedding methods Analogies Empirical analysis Theory Conclusion

Overview

Fei-Tzin Lee (Columbia University) embeddings! Spring 2019 54 / 56



Overview Word embedding methods Analogies Empirical analysis Theory Conclusion

Overall conclusions?

• Important for theoretical work to be grounded in existing empirical
literature

• On the other hand, theory can motivate and explain experimental
results

• There are still many questions remaining!
• Are words really distributed on a semantic manifold?
• What does dimension tell us? Does intrinsic dimension differ between

languages?
• Does embedding word-association data directly give us more

interpretable dimensions?
• Generally, what other implicit assumptions can we call into question?
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Thanks!

:) Questions?
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Back-links

• Overview

• Methods
• Non-contextualized
• Contextualized
• Extensions

• Analogies

• Empirical analysis

• Theory

• Conclusions
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Forward links

1 Data

2 Methods

3 Empirical analysis

4 Theory

5 Extra
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Evaluation sets

Dataset Type Subcategories Questions Year

RG similarity n/a 65 1965 TOEFL
synonym n/a 80 1997

Wordsim353 similarity similarity and relatedness 353 2002
BLESS concept-relation co-hyponymy; hy-

pernymy; meronymy;
attribute and event

?? 2011

MSR analogies syntactic 8,000 2013
Google analogies semantic and syntactic

(morphological)
19,544 2013

BATS analogies semantic and morpholog-
ical

99,200 2016
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Algorithms

Paper LSA SVD word2vec GloVe Other

Levy et al. (2015) x x x
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Methods

1 word2vec

2 LSA

3 PPMI-SVD

4 GloVe

5 ELMo

6 BERT

7 Dependency-based embeddings

8 Association-based embeddings

9 Gaussian embeddings

10 Hyperbolic embeddings
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word2vec(2013)

Original methods: skipgram and CBOW; both classification tasks

• Skip-gram: classify context words given a target word vector

• CBOW: classify target word given (averaged? summed?) context
word vectors
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word2vec (2013)

Skip-gram objective: maximize
1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt)

How to define p(wt+j |wt)? Originally: use softmax

p(w |t) =
exp(cTw vt)∑W

w ′=1 exp(cTw ′vt)

Problem: this is usually very expensive

SGNS: instead, use sigmoid + negative samples

log σ(cTw vt) +
k∑

i=1

Ewi∼Pn(w)[log σ(−cTwi
vt)]
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word2vec (2013)

• J =
∑

(w ,c)∈D #(w , c)(log σ(w , c) + kEcN∼PD
[log σ(w , cN)])

• In practice, negative sample contexts cN are drawn from an exponent

of the empirical unigram distribution, PD(c) =

(
#(c)∑

c ′

)3/4
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LSA

• Given: a word-document co-occurrence matrix M

• Perform rank-k SVD on M; decompose into W = UΣ, C = V
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Neural Word Embedding as Implicit Matrix Factorization
(Levy and Goldberg, 2014)

SGNS

• Goal: maximize probability of observed pair occurrence and negative
pair non-occurrence

• P(D = 1|w , c) = σ(w · c) =
1

1 + e−w ·c

• P(D = 0|w , c) = 1− P(D = 1|w , c)

• For a single (w , c) pair, we have the objective

log σ(w · c) + k · EcN∼PD
[log σ(−w · cN)]
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Neural Word Embedding as Implicit Matrix Factorization
(Levy and Goldberg, 2014)

If we have sufficient dimensionality that (w , c) pairs are independent, the
above gives us the global objective

l =
∑

(w ,c)∈D

log σ(w · c) + kEcN∼PD
[log σ(−w · cN)]

=
∑
w∈Vw

∑
c∈Vc

#(w , c)(log σ(w · c) + kEcN∼PD
[log σ(−w · cN)]).

Writing out the expectation,

EcN∼PD
[log σ(−w · cN)]) =

∑
cN∈Vc

#(cN)

|D|
log σ(−w · c)
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GloVe (2014)

Idea: want to capture ratios of co-occurrence probabilities. Want a model

F (wx ,wy , cz) =
Pxz

Pyz
with a few nice properties:

1 Ideally, it should encode these ratios into vector offsets:

F (wx ,wy , cz) = G (wx − wy , cz) =
Pxz

Pyz

2 To keep things simple, the arguments should interact only via dot

product: G (wx − wy , cz) = H((wx − wy )T cz) =
Pxz

Pyz

3 Co-occurrence is symmetric, so we should be able to swap out word
and context vectors, or word vectors for each other

4
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GloVe objective

• Final loss function: J =
∑|V |

i ,j=1 f (Mij)(wT
i cj + bi + b′j − logMij)

2
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Contextualized word embeddings

Credit: Yoav Goldberg (https://twitter.com/yoavgo/status/1106572683016368128)
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ELMo (2018)

• Bidirectional LSTM (separate forwards and backwards components)

• Learned embeddings are weighted averages of intermediate
representations from every layer

• Higher level states encode context-dependent meaning (e.g. can be
used for WSD) whereas lower-level states model syntax (e.g. can be
used for POS tagging)
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BERT (2018)

• Transformer architecture

• To avoid issues of peeking at words while still using bidirectional
layers, randomly mask a certain percentage of words through all layers

• Next-sentence classification
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Dependency-Based Word Embeddings (Levy and Goldberg,
2014)

Idea: replace linear context in SGNS with dependency-based context
windows.

• Contexts take the form (word, label) for modifiers and (word, label−1)
for the head
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Dependency-Based Word Embeddings (Levy and Goldberg,
2014)

Experiments

• Qualitative evaluation - nearest neighbors

• Quantitative evaluation - WordSim353; Chiarello et al. 1990. Goal:
rank semantically similar (functionally similar) words above
semantically related (topically similar) using cosine similarity.
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Word Representations via Gaussian Embedding (Vilnis and
McCallum, 2015)

Goal: learn parameters θ such that an ‘energy function’ Eθ(x , y) scores
observed pairs x , y higher than unobserved.

• Training: Backpropagate under max-margin loss:

Lm(w , cp, cn) = max(0,m − E (w , cp) + E (w , cn))

• Two energy functions:
• Symmetric: continuous inner product
• Asymmetric: KL divergence
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Word Representations via Gaussian Embedding (Vilnis and
McCallum, 2015)

Evaluation

• Specificity/uncertainty (qualitative)

• Entailment

• Word similarity
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Predicting human similarity judgments with distributional
models: The value of word associations (De Deyne et al.,
2016)

Corpus data

• Text corpora: OpenSubtitle (English, 1970-2016); Corpus of
Contemporary English; Global Web-Based English corpus (British,
American, Canadian and Australian subsets); SimpleWiki

• Preprocessing: lowercasing; stopwords and words occurring <300
times discarded

• Total: 65,632 unique word types after pruning; 2.16 billion tokens
prior to pruning (doesn’t say how many after)
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Predicting human similarity judgments with distributional
models: The value of word associations (De Deyne et al.,
2016)

Association data

• Setup: each participant is given 15-20 cue words and asked to
respond with three (ranked) associations for each cue

• >85,000 participants; 82% native speakers

• Total: 10,021 cue words with at least 300 responses
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Predicting human similarity judgments with distributional
models: The value of word associations (De Deyne et al.,
2016)

Embeddings

• Corpus-based embeddings: raw PPMI vector? (unclear); CBOW;
pretrained embeddings

• Association-based embeddings: ‘spreading activation’ over a
random-walk graph
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Predicting human similarity judgments with distributional
models: The value of word associations (De Deyne et al.,
2016)

Evaluation

• Similarity tasks: WordSim353 (similarity subset); SimLex999

• Relatedness tasks: WordSim353 (relatedness subset); MEN (Bruni et
al., 2012); MTurk dataset (Radinsky et al., 2011); RG1965
(Rubenstein and Goodenough, 1965); MTURK-771 (Halawi et al.,
2012)

• ‘Remote triads’, a novel task: pick the most related pair from a set of
three nouns roughly the same in concreteness and frequency (100
triads evaluated by 40 native speakers)

• Association-based embeddings do better than distributional

• No extrinsic evaluations
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Predicting human similarity judgments with distributional
models: The value of word associations (De Deyne et al.,
2016)

Results
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Poincaré Embeddings for Learning Continuous Hierarchical
Representations (Nickel and Kiela, 2017)

Distance on the Poincaré ball: arcosh
(

1 + 2
||u − v ||2

(1− ||u||2)(1− ||v ||2)

)
Training

• Riemannian gradient descent: rescale Euclidean gradient to match
hyperbolic distance; project new point back onto the manifold

• Loss function: depends on the problem, but roughly speaking, want
to constrain similar words to be close in embedding space
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Poincaré Embeddings for Learning Continuous Hierarchical
Representations (Nickel and Kiela, 2017)

Evaluation - WordNet

• Three types of embedding (Euclidean-Euclidean,
Euclidean-translational, Poincaré); two tasks

• Reconstruction: embed (the closure of) the entire WordNet noun
hierarchy, then reconstruct it from the embedding

• Link prediction: split into train, validation and test sets; use train set
to learn embeddings and predict links on test set

• Loss function: L =
∑

(u,v)∈D

log
e−d(u,v)∑

v ′∈N(u) e
−d(u,v ′)

• Evaluation: mean rank of observed (u, v) pair among negative
observations (u, v ′)
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Poincaré Embeddings for Learning Continuous Hierarchical
Representations (Nickel and Kiela, 2017)
Evaluation - WordNet
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Poincaré Embeddings for Learning Continuous Hierarchical
Representations (Nickel and Kiela, 2017)

Evaluation - HyperLex
Basically just use the WordNet-trained embeddings to predict graded
entailment: score(u, v) = −(1 + α(||v || − ||u||))d(u, v). Poincaré
embeddings correlate much better with true ranking than all other
methods evaluated.
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Empirical analysis

1 Rogers et al.

2 Finley et al.

3 Improving distributional similarity

4 Caron p-transform

5 Context types and dimension

6 Geometry
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Frame Title
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What Analogies Reveal about Word Vectors and their
Compositionality (Finley, Farmer and Pakhomov, 2017)

• Baseline: nearest neighbors of adjacent vertices + reciprocal rank

• Three types of stable relations: named entities; inflectional
morphology; gender relations
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Improving Word Embeddings with Lessons Learned from
Distributional Similarity (Levy, Goldberg and Dagan, 2015)

Three broad classes of parameters

• Preprocessing
• Dynamic context window
• Subsampling frequent words
• Rare word deletion

• Association metric
• Shifted PMI (negative sampling)
• Context distribution smoothinng

• Postprocessing
• Adding context vectors
• Eigenvalue weighting (e.g.

√
Σ)

• Normalization
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Improving Word Embeddings with Lessons Learned from
Distributional Similarity (Levy, Goldberg and Dagan, 2015)
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The Role of Context Types and Dimensionality in Learning
Word Embeddings (Melamud, McClosky, Patwardhan and
Bansal, 2016)

•
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Factors Influencing the Surprising Instability of Word
Embeddings (Wendlandt, Kummerfeld and Mihalcea, 2018)

Stability Percent overlap of a word’s k nearest neighbors across two
embedding spaces.

Corpora

• Five domains from NYT (U.S., New York and Region, Business, Arts,
Sports)

• All five NYT domains combined (121k sentences, 24k word types)

• Europarl (2.3M sentences, 44k word types)
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Factors Influencing the Surprising Instability of Word
Embeddings (Wendlandt, Kummerfeld and Mihalcea, 2018)
Approach: use ridge regression to model influence of potential factors on
stability
• Primary and secondary POS
• Number of syllables (zero if not present in dictionary)
• Higher raw frequency (between the two spaces); lower raw frequency;

absolute difference in raw frequency
• Corpus vocabulary size; percent overlap between vocabularies; domain

of each corpus; whether domains are the same
• First appearance in corpus A and in corpus B (as percent of number

of sentences)
• Algorithm used (w2v, GloVe or PPMI-SVD); embedding dimension
• Frequency is minorly but not extremely predictive
• Higher stability correlates with slightly higher word similarity; when

vectors are modified during training for POS tagging it seems to learn
to compensate
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Factors Influencing the Surprising Instability of Word
Embeddings (Wendlandt, Kummerfeld and Mihalcea, 2018)

Results

• Most important: higher first appearance, lower first appearance

• Very important: POS (numerals, verbs and determiners most stable;
punctuation, adpositions and particles least stable)

• Stability within domain is higher than across domain

• GloVe is much more stable than w2v or PPMI
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Factors Influencing the Surprising Instability of Word
Embeddings (Wendlandt, Kummerfeld and Mihalcea, 2018)
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How much syntax do word embeddings encode?

Idea: want to determine whether word embeddings are useful for
statistical constituency parsers
Test three ways in which word embeddings might help

•
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A Structural Probe for Finding Syntax in Word
Representations (Hewitt and Manning, 2019)

• Contextualized embeddings can do WSD

• Perhaps they represent syntax trees in some way?

• In fact, can learn a linear transformation taking the embeddings of a
sentence to positions in a subspace that encode tree position via
squared L2.
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The strange geometry of skip-gram with negative sampling
(Mimno and Thompson, 2017)

Main results

• SGNS word vectors mainly point in the same direction

• SGNS context vectors form a noisy mirror of the word vectors

• The average inner product between word vectors and the mean word
vector increases with more negative samples
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The strange geometry of skip-gram with negative sampling
(Mimno and Thompson, 2017)
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The strange geometry of skip-gram with negative sampling
(Mimno and Thompson, 2017)
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The strange geometry of skip-gram with negative sampling
(Mimno and Thompson, 2017)
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Theory

1 A Latent Variable Model for PMI-based Word Embeddings (Arora et
al., 2016)

2 Gittens et al. (2017)

3 Ethayarajh et al. (2018)

4 Allen and Hospedales (2019)

5 Frandsen and Ge (2019)

6 Yin and Shen (2018)

7 Alvarez-Melis and Jaakkola (2018)

8 Arora et al. (2018)

9 Stratos et al. (2015)

10 Hashimoto et al. (2016)
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Gittens et al. (2017)

Problem setup

• Idea: a set of context words C = {c1, ..., cm} has the same meaning
as a single word c if, for all other words w , p(w |c1, ..., cm) = p(w |c).

• However, typically no word c will exactly satisfy this, so approximate
the best paraphrase of C as argminc∈VDKL(p(·|C )||p(·|c))

• Problems:
• not clear how to define p(·|C )
• minimizing KL-divergence is difficult in general
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Gittens et al. (2017)

Assumptions

1 ∀c∃Zc 3 ∀w , p(w |c) =
1

Zc
exp(〈uc , vw 〉)

2 ∀C = {c1, ..., cm}∃Zc 3 ∀w , p(w |C ) =
1

ZC
p(w)1−m

∏m
i=1 p(w |ci )
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Understanding Composition of Word Embeddings via
Tensor Decomposition (Frandsen and Ge, 2019)

Based on an extension of Arora et al.’s random-walk model, but with one
modification: at every timestep, there is a chance to generate either a
single word or a “syntactic word-pair”.
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On the Dimensionality of Word Embedding (Yin and Shen,
2018)

Problem: determine the optimal dimension for word embeddings from a
theoretical perspective.

Approach: Define a “loss function” (distance metric) between embedding
spaces; use the distance between an ‘oracle embedding’ E and actual
learned embeddings Ê (on noisy data) at each dimension to determine the
best choice
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On the Dimensionality of Word Embedding (Yin and Shen,
2018)

Details

• When we use W = U, C = V , the PIP loss between E and Ê
becomes ||PIP(E )− PIP(Ê )||2 = d − k + 2||ÊTE⊥||2
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Gromov-Wasserstein Alignment of Word Embedding
Spaces (Alvarez-Melis and Jaakkola, 2018)

Goal: find a mapping (‘alignment’) between word embedding spaces

• Use optimal transport mapping between distributions of pairwise
distances in each space

• Overall distance between spaces is rotation- and scale-invariant
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Linear Algebraic Structure of Word Senses, with
Applications to Polysemy (Arora, Li, Liang, Ma and
Risteski, 2018)

• Polysemous words have embeddings that are linear compositions of
true sense embeddings

• Sense embeddings can be recovered via sparse coding
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Word Embeddings from Decompositions of Count Matrices
(Stratos et al., 2015)
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A Latent Variable Approach to PMI (Arora et al., 2016)

Idea: specify a model for language generation; identify closed-form
expressions for co-occurrence probabilities; use properties of model to
analyze existing embedding algorithms.
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A Latent Variable Model for PMI-based Word Embeddings
(Arora et al., 2016)

The random walk model

• Assumption: words and topics have fixed true (hidden) vectors

• Words are drawn i.i.d. from s · v̂ , the product of the spherical
Gaussian distribution with a random scalar (assume s has constant
expectation τ and constant upper bound κ)

• A latent “discourse vector” performs a random walk over the unit
sphere; a word vector v is drawn at each timestep with probability
proportional to ev ·c

• Assume the random walk has stationary distribution uniform over the
unit sphere, and step size is bounded by ε2/

√
d
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A Latent Variable Model for PMI-based Word Embeddings
(Arora et al., 2016)
Main results

• Under the model assumptions, there is some constant Z such that the
probability that the ‘partition function’ Zc =

∑
w exp(vw · c) diverges

from Z by a factor of more than 1± εz is less than δ for appropriately
defined εz , δ

• Using the previous, we can write

log p(w ,w ′) = ||vw + vw ′ ||2/2d − 2 logZ ± ε

log p(w) = ||vw ||2/2d − logZ ± ε

PMI (w ,w ′) = 〈vw , vw ′〉/d ± O(ε)

for window size 2; the above are shifted by γ = log(
q(q − 1)

2
) for

general window size q.
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A Latent Variable Model for PMI-based Word Embeddings
(Arora et al., 2016)

Training objective
If we assume that co-occurrence probability is approximately distributed
according to a multinomial distribution, then MLE word vectors optimize

min
{vw},C

∑
w ,w ′

Xw ,w ′(log(Xw ,w ′)− ||vw + vw ′ ||2 − C )2
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A Latent Variable Model for PMI-based Word Embeddings
(Arora et al., 2016)

The random walk model

• Assumption: words and topics have fixed true (hidden) vectors

• A latent “discourse vector” performs a random walk over the unit
sphere; a word vector is drawn at each timestep
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A Latent Variable Model for PMI-based Word Embeddings
(Arora et al., 2016)

Experimental validation
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A Latent Variable Model for PMI-based Word Embeddings
(Arora et al., 2016)

Experimental validation?
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Evaluation :(
A Latent Variable Model for PMI-based Word Embeddings (Arora et al.,
2016)
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Word Embeddings as Metric Recovery in Semantic Spaces
(Hashimoto et al., 2016)

Fei-Tzin Lee (Columbia University) embeddings! Spring 2019 61 / 62



Backup slides :) Data Methods Analysis Theory Extra references

Extra

TODO: add LSA (1990); Bullinaria and Levy (2007)
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